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Abstract-The steady-state response of an infinite plate to a steadily moving line load is studied. The
nonlinear plate theory of Herrmann is used. The plate response is governed by a set of nonlinear differential
equations and, in addition, must satisfy the "radiation" conditions. Appropriate radiation conditions for the
present nonlinear problem are developed. Exact solutions representing nonlinear waves generated by the
moving load are constructed.

I. INTRODUCTION

The dynamic response of structural elements such as elastic beams and plates to moving loads
has been the subject of numerous studies in the engineering literature using various linear
theories. It is not the purpose of the present work to review such studies. We wish to point out,
however, that the validity of such linear solutions is generally limited to small load intensities and
to loads with speeds that are away from certain "critical speeds." When such limitations are
violated, solutions on the basis of nonlinear theories are then called for. As nonlinear problems
are intrinsically more difficult to solve, there have been but a few available nonlinear studies on
the subject. In this connection we mention the recent publications [1-3], wherein attempts were
made to obtain nonlinear beam solutions using the perturbation method.

We consider here an infinite, elastic plate under the action of a steadily moving line load. We
shall use the nonlinear plate theory of Herrmann[4], which is a dynamic version of the von
Karman plate theory [5]. We are interested in the steady-state response of the plate representing
waves generated by the moving load and shall construct exact nonlinear solutions as a basis for
assessing the validity of the linear solutions as well as the nonlinear perturbation solutions.

The mathematical problem, as formulated in Section 2 in a moving reference frame, reduces
to that of solving a nonlinear, second order ordinary differential equation of the Duffing type for
the dependent variable cp, which is the derivative of the transverse plate displacement with
respect to the moving variable (see eqn 6). We note that the same equation but without the
loading term was also previously derived by Advani[6]. He showed the existence of a class of
exact travelling wave solutions for the plate in the absence of external loads and inquired as to
how such waves might be established. Our solutions thus provide some partial answer to Advani's
inquiry.

The nonlinear equation for cp as mentioned above has a two-parameter family of solutions.
One thus has the difficult task of selecting from such solutions the unique one that represents
waves emanating from the load. For linear problems such "outgoing wave" or "radiation"
conditions are well known and easy to pose, but there does not seem to exist any well-established
principle for posing such radiation conditions for nonlinear problems. We develop such
conditions here by transforming the nonlinear problem into an infinite set of linear problems
through a perturbation expansion and applying the radiation conditions to the linear problems.
However, wedo not actually construct theformal series norprove its convergence. Byexaminingthe
manner in which the terms in the series are obtained, we are able to deduce the appropriate conditions
which the nonlinear solution must satisfy if the formal series does converge. With such radiation
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conditions known we then proceed directly to construct the exact solution of the nonlinear
problem.

The linear problem is of two different types, depending on whether p 2 > 0 or p 2 < 0 where p 2

is a parameter depending on the load speed. In Sections 3 and 4 the cases p 2 > 0 and p 2 < 0 are
studied separately. For p 2> 0, a unique nonlinear solution is obtained that is valid for all values
of the load intensity. For p 2 < 0, however, the nonlinear solution so constructed exists only for a
finite range of values of the load intensity. For large values of the load intensity a new type of
solution similar to that for p2> 0 is found to exist. This latter solution satisfies a different set of
radiation conditions which are discussed in Section 4.

In Section 5 we consider the case p2 = 0 and discuss the physical meaning of p2. Other
discussions and remarks are given in Section 6.

2. FORMULATION

Let (x, y, z) denote Cartesian coordinates and (u, v, w) the corresponding displacement
vector. We choose the undeformed midplane of the plate to coincide with the x, y plane and set,
as usual,

() awo
u x, y, z, t = uo(x, y, t)- Zax

awo
v(x, y, z, t) = Vo(x, y, t) - Zay

w(x, y, Z, t) = Wo(x, y, t).

(I a)

(I b)

(Ic)

We take the transverse load q in the form of a line load that extends in the y-direction and has a
constant speed c in the x-direction

q = At5(x - et) (2)

where A is the load intensity and t5 denotes the Dirac function. We then seek "steady-state"
solutions, Le. solutions that are functions of

7'=x-ct

only. Following[4], the governing equations in terms of Uo, Vo and Wo may be written as

h[ h2( 2 2) '''+ 2(' , 1( ')3) 2 ']' A"'()P -12 Cp - e Wo Cp uowo+"2 Wo - C Wo = - 0 7'

(3)

(4a)

(4b)

(4c)

where Cp = [Elp(I- V2)]'12 is the flexural wave speed, e. =(Glp)1I2is the shear wave speed, with
E being Young's modulus, G being the shear modulus and tJ being Poisson's ratio, p is the
density, and h is the plate thickness. The primes in (4) signify differentiations with respect to 7'.

It is seen from (4b) above that the equation for vo is uncoupled from those for Uo and woo As
eqn (4b) does not involve the applied load we shall not consider it any further.

The equations for uo and wo as given in (4a) and (4c) are coupled. Dividing (4a) by c/ and (4c)
by phe/ and integrating the resulting equations with respect to T, we obtain

(l-A2)Uo+~(w(i D1

h2 (1 ,2) If' " 1 ( ,)3 ,2, A H() D-12 -" Wo +uowo+"2 Wo -" Wo=- phc/ 7' + 2

(5a)

(5b)
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where A=c1cp , D1 and D2 are constants of integration and H denotes the Heaviside function.
We take D2 = A Iphc/ so that the right-hand side of (5b) vanishes identically ahead of the load
(T > 0). Eliminating u& from (5a) and (5b) and introducing cp ::;; w~, we finally obtain

where

p2::;; 12(A 2 - A· _ D 1)/h 2(l- A2)2

(j "'" A2/2(A 2_ A!- D 1)

B ::;; 12Alph 3c/(l- A2).

(6)

(7a)

(7b)

(7c)

As was mentioned in the Introduction, the above Duffing-type equation, with the right-hand side
being zero, was also given in[6].

We now consider eqn (6) for cp, regarding B and A as given. It can be shown that, for
arbitrarily chosen cP (0) and cP'(0), eqn (6) has unique solutions for both T > 0 and T < O. So there is
a two-parameter family of solutions for cpo We shall develop radiation conditions below that
enable us to determine those solutions of (6) that represent outgoing waves.

3. THE CASE p2>O

We shall assume c #c cp so that A#c 1. In order to derive radiation conditions for eqn (6) we
shall transform it into a system of linear equations. This is achieved by expanding cp in a formal
series in B. The leading member in the system corresponds to the linearized form of eqn (6),
whose solution takes different form for p 2 > 0 and p 2< O. Since the linear solution is used to
generate solutions of the succeeding members in the system, we thus consider the cases p 2> 0
and p2< 0 separately in this and the next section. The case p 2::;; 0 will be discussed in Section 5.

p2> 0 implies (j > O. For convenience we introduce p12=P2> 0, f31 = f3 > 0 as defined in (7a)
and (7b) and rewrite eqn (6) as

(8)

We now regard B as a small parameter and expand cp as a power series in B. We expect cp to
vanish identically when B ::;; 0 and to be an odd function of B. Setting B = E we now write

i = even. (9)

Substituting (9) into (8) and collecting like powers of E yields the system of linear equations

cpH Pl2cpO = - H(-T)

cp~+Pl2cp2 = - p/{j ICPo3

f/7: +Pl2cp4 = - 3p/{jI(CP02f/72 + f/70f/722
).

(lOa)

(lOb)

(l0e)

We consider the solution of these equations below.
We must develop conditions so that the solutions for the CPt'S in eqn (l0) are unique and

represent waves that are generated by the applied load. Alternatively, these same conditions must
render the solutions of the homogeneous equations associated with (l0) identically zero, for then
there is no load on the plate and the solutions would represent waves that are generated at
infinity. The homogeneous equations associated with (l0) have the general solution CPh(T)
consisting of the linear combinations of exp(±ipIT) which are bounded for all T. The usual
boundedness requirement on the CPI'S is thus insufficient to make CPh(T) vanish. This difficulty may
be resolved by introducing a small damping, i.e. by adding a term ccp', c >0, into eqn (l0),
requiring the solutions to tend to zero as T~ ±oo, and then taking their limits as c .... 0. One can
easily verify that the solutions exp (±ipl'r) then go to exp (q ± ipIT), where q is real and negative
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and tends to zero as l' ""'" O. Thus the solutions exp (± ipl1') are allowed for l' > 0 but not for l' < O.
The vanishing of CPh (1') for l' < 0 together with the continuity of both CPh (1') and cp;'(1') at T = 0 then
renders CPh (1') identically zero.

We now write the solution for cpo in (lOa) as

(11)

Applying the condition of continuity of cpo(1') and cp~(1') at l' = 0, we determine Ao+ and Bo+ and
obtain

( ) _{(-lIP/)COSPI1' 1'>0
cpoT- /2-lpI 1'<0

(l2)

We remark that BcPo(1') is the linearized solution of eqn (8). The graph for Blpo(7') is shown in
Fig. 1.

We determine <P2, CP4, •• • in similar manner. We write the solution for <P2 in (10b) as

(13)

where cp;p and 1p2P are particular solutions of (lOb) for 7' > 0 and 7' < 0 respectively. The constants
At and B2+ are again determined by the continuity of <P2(7') and <p2(7') at 7' = o.

We now make an important observation: As cpo is constant for 7' < 0 and the right-hand side of
(lOb) depends only on cpo, the right-hand side.of (lOb) is constant for 7' < O. This in tum implies
that cpipis a constant and CP2 is constant for 7' = O. By a simple induction it follows that CP4, ••• are
all constant for 7' < O. Thus the nonlinear solution Ip as represented by the formal series in (9) is
constant behind the load (7' < 0).

We now return to solve the nonlinear eqn (8) under the condition that <p be constant for 7' < o.
Consider first the tail wave, i.e. the solution for 7' < O. As <p' = Ip" =0 for 7' < 0, the tail wave is a
constant solution of the algebraic equation

(l4)

It can be shown [7] that the above cubic equation has only one real root, F 1 say, which is given by

where

Thus

_ 3B (311. )112
'Y1-~2 "'IPI

(l5)

(l6)

(17)

The solution for the head wave, Le. for 7' > 0, may be obtained by considering eqn (8) in the phase
plane. With the known conditions cp(O) =F 1 and cp'(O) =0, the solution for the head wave may be

1>

-----=-OhP r

-Blp,2 I
Fig. l. Linear solution for p 2 < O.

F,---v

Fig. 2. Nonlinear solution for p 2 < O.
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expressed in terms of the Jacobian elliptic function[8}

471

(18)

where 8/== (3IFt A graph for .p(T) is shown in Fig. 2.
We remark that the condition .p = constant for T < 0 which led to the nonlinear solution .p (T)

given in eqns (17) and (18) may also be derived in a more direct, but perhaps less rigorous, manner
as follows: The moving line load on the plate is given as a delta function in eqn (2), whose integral
as appearing in eqn (6) is taken as a step pressure. By letting T ~ -00 we are considering a region
of the plate where the pressure front has long past, and we expect .p to approach a static solution
of eqn (8) under a constant pressure. It is easily seen that this static solution must be Fl. Now, on
multiplying eqn (8) by .p', integrating once for r < 0, and examining the resulting expression,
making use of .p(-oo) = F l and .p'(-oo) 0, one can show that .p'(T) must vanish identically and
hence .p == F l for r < O. The details, however, will be omitted here.

4. THE CASE p'<O

When p2< 0, (3 < O. We now introduce p/ = - p2 > 0, {32 = - (3 > 0 and rewrite eqn (6) as

The same expansion for .p as given in eqn (9) now leads to the following system

.p~- P22.pO = -H(-r)

.p~ - P/.p2 = -P/(32.po3

cp~ - P/CP4 = -3P/(32(.p02cp2 +CPocp/).

(19)

(20a)

(20b)

(20c)

The homogeneous equations associated with (20) have the general solution CPlt (r) consisting of
the linear combinations of exp (±P2T). We now pose the condition that the .pI'S remain bounded
as r ~ ±oo. It is easy to see that this condition renders .pit (T) identically zero.

We now write the solution for .po in (20a) as

(21)

which, after the constants Ao and Bo are determined by the continuity of .po(T) and .p iJ(T) at T = 0,
becomes

(22)

The graph of B.po(r), which is the linearized solution of eqn (19), is shown in Fig. 3.
Similarly we write the solution for .p2 in (20b) as

(23)

where .p;p and .p 2p are particular solutions of (20b) for T > 0 and T< 0 respectively and the
constants A2 and B2 are determined by the continuity of cpb) and cpHT) at T = O.

Fig. 3. Linear solution for p2> O.

~=±--T
I

Fig.4. Nonlinear solution for p2 > 0, B s Bc~
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We observe that ipo(7) as given in (22) tends to zero exponentially as 7 -.00 and to a constant
exponentially as 7-'-00. This is also true of CP;p and ip2p and hence of ip2(7) in (23). By a simple
induction, considering the manner in which ip ~ and ip ~ are formed, i = 4,6, .. ", it follows that
ip4(7), ip6(7), ... all enjoy the same property. Thus the nonlinear solution ip(7) of eqn (19) as
represented by the formal series in eqn (9) tends to zero as 7 -.00 and to some constant as 7-'-00,
with ip/(7), ip"(7), ... all tending to zero as 7 -.±oo.

We can now solve eqn (19) under the further condition mentioned above. As 7-'-00, <P(7)-' G
say and ip"(7)-'0. Equation (19) then becomes

(24)

Following[7], the above cubic equation has for B ::5 Be"

three real roots Gt, G2 and G3 , with G1 < G2::5 G3• We take

G = G2= (1/3132)II2[cos (0/3) - \/3 sin (0/3)]

with

where 12 == BIBer ::5 1. We take G = G2 because G2= 0 when B = O.
We multiply eqn (19) by ip' and integrate it once to obtain

( ,)2 2 2 2f.l 4

!E..-_P2 ip +~= Ch 7 >0
2 2 4 '

( ')2 2 2 2f.l 4
!E..- _ P2 ip + P2 1-'2ip + B = C < 02 2 4 ip t, 7 .

(25)

(26)

(27)

(28a)

(28b)

By the conditions ip(oo)=ip'(oo)=ip'(-oo)=O and ip(-oo)=G2 we can determine the constants Ch

and C. as

C =0 C =p/ /)/(2 - /)/)
h , t 12132 (29)

where /)22== 3132G2
2. Now by the continuity of ip (7) and ip' (7) at 7 = 0 we can determine ip (0) and

ip'(O). Thus

(30)

and ip'(O) can be expressed in terms of ip(O) using either (28a) or (28b).
With Ch , c., ip(O) and ip'(O) known, we can determine ip(7), for both 7 >0 and 7 <0, by

solving for ip'(7) in eqns (28a) and (28b) in terms of ip, integrating 7 as a function of ip, and then
inverting. Omitting the details, we have for the head wave

(31)

The final expression for the tail wave for B < Ber is quite lengthy. We present it in the implicit
form

-.! (1-/)22
) +482(1/3132)1/2[/)2(1/3132)1/2 - ip] + 2(2/132)1/2(1_/)/)1/2[(2 -/)/)/132

132

-2/)2(1/3132)1/2ip - ip2]1/2 = [/)2(1/3132)112 - ip] exp [(1_/)/)1/2p2(7 - 72),

7 < 0, B < Ber (32)
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though an explicit expression may be obtained by squaring eqn (32) above and then solving a
quadratic equation for lp, For B = Ber, we have

(33)

We remark that the constants T1 and T2 in eqns (31)-(33) above are to be determined so that eqn
(30) holds. The graph for the lp (T) obtained here is shown in Fig. 4.

When B > Ber, the root O2 of eqn (24) becomes complex and the solution lp(T) given in eqns
(31)-(33) ceases to exist. Equation (24) for 'Y2 == BIBer> 1has only the real root 0 = O. given by

(34)

We can obtain a new type of solution of eqn (19) by requiring lp to approach a static solution of
eqn (19) under a constant pressure as we discussed near the end of Section 3. Setting lp (-00)= Ot,
which is the only static solution of (19) for 'Y2 > 1, one can also show that lp'(T) must then vanish
identically for T < O. Hence we have

(35)

By the continuity of lp (7') and lp'(7') at T =0 we have from eqn (35) lp (0) =0 1 and lp' (0) = O. The
solution for the head wave is now uniquely determined and is obtained by integrating eqn (19) as
before. The explicit solution for lp(T), T >0, takes different forms depending on the value of B.
We have the following subcases:

(i) For O. < -(2/~2)·/2 or, equivalently, for B < 'Y2Ber, where 'Y3 = 3.6742 and is the root of the
equation

(36)

(see eqn 34), we have

(37)

where ~/ == f:hO/ < 2. The Jacobian elliptic function dn is defined in[8].
(ii) For 01 = _(2/~.)·/2, or B = 'Y3Ber, we have

(38)

(b)

----"'-01°1\ I\T
G1 /V

(e)

Fig. 5. Nonlinear solutions for p' > 0: (a) B < y,R" (b) B = y,Bm (c) B > y,B" (y, = 3.6742).
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(39)

where fJ/ == f32G/ > 2.
The graphs for the solutions for <peT) given above are shown in Fig. 5. We shall discuss these

solutions in Section 6.

5. OTHER LIMITING CASES

We now consider the case p 2 =O. By eqn (7a) this implies A2 - A4 - D 1 =O. Since we assume
1- A2~ 0, it follows from (7a) and (7b) that p 2f3 = 6A 2/h 2(1 - A2)2 and eqn (6) becomes

(40)

We apply the condition that <p tends to a static solution of (40), i.e. to some constant as T -+ -00.

This constant must be a solution of the equation

(41)

whose only real solution is

(42)

By multiplying eqn (40) by <p' and integrating it once for T < 0, along with the conditions
<p(-oo)=F and <p'(-00)=0, one can establish that <p'(T)==O for T <0 and hence

<p(T)==F T<O

Similarly, with <p(0) = F and <p'(0) = 0 we can also determine the head wave as

<peT) = F cn [y(6)AFT/h(l- A2),1/2] T >0

(43)

(44)

We remark that the result in (44) also agree with those given in eqns (18) and (39) when proper limits
of the latter are taken.

We now consider the case A2 = 1. Since p 2 is no longer well defined, eqn (6) is not valid. We go
back to eqns (5a) and (5b). Assuming that ub is finite, we have from (5a)

2

i =D 1 (45)

Thus if <p is not identically zero, D 1 must be positive and <p = 2D 1• From eqn (5b) we then have

Solving for ub we obtain

/ I 3 2 A
Uo<p +-2<P - A <p = -p H(-T)

P cp

(46)

I JA2 - D 1

UO = lA 2 - D, +Y(2D~)phC/
T>O

T <0
(47)

The travelling load thus generates a discontinuity in ub.
Now if A2 = I and D 1 also vanishes, then by eqn (5a) <p == O. Equation (5b) then yields no

solution for ub unless A = O. We conclude that if A2 = 1 and D 1 :S 0, the governing eqns(5a) and
(5b) yield no solutions in which ub is finite.
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6. DISCUSSIONS AND CONCLUSIONS

The solutions given in Sections 3 and 4 are separated by p2> 0 and p2< O. The value p2as
defined in eqn (7a) depends on A2 and D•. Thus p2 is known if A2(# 1) and D t are given.

D t was introduced in eqn (5a) as an integration constant. In all the cases that we have
considered, lp tends to a constant as 7" -+ -00. Thus uO also tends to a constant as 7" -+ -00.

We remark that D. cannot be determined unless some further condition is posed. For
instance, in[6] Dt is determined by the further requirement that uo be periodic in T.

One way to determine Dt is to prescribe the axial force Nx at 7" = -00. Indeed, we have[l]

(48)

Eliminating ub from (5a) and (48) and solving for D i , we have

(49)

Thus Dt is determined by knowing the limiting values of N x and lp as 7" -+ -00.

With A2 and D t given p2 is computed from eqn (7a). In particular, setting A2 - A4 - D t = 0 and
solving for A2, we have

A2 = A/ =1± YO - 4D1)

2
(50)

If D 1 :5 0, the only real positive solution for A/ is obtained by taking the plus sign in (50) above,
and we have the case p2> 0 or the case p 2 < 0 depending on whether A is smaller or greater than

If 0 < D1 :5 1/4, there are two real positive solutions for A/. We have the case p2> 0 if

= [1- YO- 4DI)J1I2 [1 +YO- 4Dt)J1I2 =
AC1 - 2 < A < 2 - AC2

and the case p 2 < 0 if

[
1-YO- 4Dt)J1/2

A < 2

or

[
1+yO - 4Dt)J1/2

A> 2 .

If D t > 1/4, we have case p 2 < 0 regardless of the value for A.
In the linear theory Nx =0, which is obvious from eqn (48). Suppose we also set N x =0 here.

Then Ac = 1. We have the subcritical case p 2 > 0 if A < 1(C < cp ) and the supercritical case p 2 < 0
if A> l(c > cp ). It should also be obvious, by setting D t = 0 in eqn (49), that the limiting value of
Nx as 7" -+ -00 must be related to that of lp by

(51)

We now consider the solution obtained in the previous sections. As we observed at the end of
Section 3, a general condition that has to be satisfied by the plate response is that as 7" -+ -00, lp
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must tend to a static solution of the dynamic equation under a constant load. This is justified in
part in Sections 3 and 4 through a perturbation study. In the case of p2> 0, a nonlinear solution
for fP is given in Section 3 which is constant for T < 0 and oscillates (about fP = 0) for T > O. This
solution exists for all values of the load intensity and is the only solution that satisfies the general
condition mentioned above. The nonlinear solution may be generated by the linear solution, with
the cosine term in the head wave of the linear solution generating the Jacobian elliptic function cn
in the head wave of the nonlinear solution. From Fig. 1 and Fig. 2 it is seen that the nonlinear
solution fP is very similar to the corresponding linear solution BfPo.

In the case p 2 < 0, solutions of two different types are obtained in Section 4. The first is that
generated by the linear solution and exists only for B :5 Ber, i.e. when the load intensity is not too
large. This solution, like the corresponding linear solution, is of the exponential type for both
l' < 0 and l' > 0 (see Fig. 3 and Fig. 4). Also, this solution satisfies the general condition mentioned
above but is not completely determined until the further condition fP ~ 0 as l' ~ 00 is added. A
solution of the second type is completely determined by the general condition mentioned above
and it is constant for 1'<0. It is interesting to observe that the head wave of this solution takes
different forms depending on the load intensity. For very large values of B the head wave
oscillates about fP = 0 and is very similar to the solution found for the case p 2 < 0 in Section 3
(Fig. 5c). As B decreases, the head wave changes to an exponential type and approaches zero as
T~OO (Fig. 5b). For small values of B, the head wave oscillates about a nonzero static solution of
the dynamic equation for 1'>0 (Fig. 5c). We also note that the last solution exists even for
B :5 Ber•

In Sections 5 a nonlinear solution for fP is obtained for the case p 2 = 0 and this solution is
simply the common limit of the solution for p 2> 0 and of the solution for p 2< 0 for large values
of B. This is in fact what we expect since when B is large, the solution for fP will likewise be large
so the linear term in eqn (6) becomes negligible when compared with the nonlinear term and the
distinction between the cases p2 > 0 and p 2 < 0 becomes insignificant. These results are
consistent with those obtained in[5] using the perturbation method. The results in[5] predict that
for a nonlinear elastic beam under a moving load, the subcritical modes of response (p 2> 0) are
extended into the supercritical region (p 2 < 0) and there exist more than one type of supercritical
modes of response of the beam, provided that the geometrical nonlinearity in the beam is
predominant. (See Fig. 1 of[5].)

We have considered the steady-state response of an elastic plate to a moving line load. As we
have seen, one of the main difficulties in obtaining the solution for the plate response is connected
with the question of how to pose the radiation conditions for nonlinear problems. We have made
attempts here to develop such conditions and then construct exact solutions for the dynamic
response of the plate.

We remark that the existence of the steady-state plate response to the moving load has been
assumed. This assumption implies that if we switch the load on at some finite time, t = 0 say, then
seek our solution in the coordinates (x - ct, Y, z, t) instead of (x, Y, z, t), the explicit dependence
of the solution on t disappears as t tends to infinity. It should be pointed out that the existence of
a steady-state plate response, as well as the rate at which such a steady-state solution is achieved,
also depends strongly on the various dampings that we have not included in the plate theory. It is
well known that a simple harmonic oscillator under a suddenly applied load never reaches a
steady-state solution unless damping is considered, though the latter has little effect on the form
of the steady-state solution. We expect an analogous situation to prevail in the plate problem here.

The formulation of the moving load problem as a transient one and then determining the
steady-state plate response as the large time limit of the transient solution would, in fact, provide
an alternative approach to the problem. Such as approach would not only serve to justify the
radiation conditions developed here, but also show how the steady-state plate response is
extablished via the transient ones and reveal the effects of various dampings. Some discussions
on the relations between transient and steady-state responses of linear elastic beams to moving
loads are given by Steele [9].

In the present paper the transient problem is governed by a pair of nonlinear partial
differential equations, the exact solutions of which would be extremely difficult. We even
encounter considerable difficulty in attempting to obtain numerical solutions by the finite
difference method, partly because the solution domain involved is infinite and partly because the
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presence of the term representing rotatory inertia in the equations makes the finite difference
scheme implicit. We do plan, however, to present such numerical solutions in the near future.
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